axiell

Programming XSLT stylesheets

for Axiell Collections

Axiell ALM Netherlands BV

Copyright © 2025 Axiell ALM Netherlands BV® All rights reserved.

The information in this document is subject to change without notice
and should not be construed as a commitment by Axiell ALM Nether-
lands BV. Axiell assumes no responsibility for any errors that may
appear in this document. The software described in this document is
furnished under a licence and may be used or copied only in accord-
ance with the terms of such a licence. While making every effort to
ensure the accuracy of this document, products are continually being
improved.

As a result of continuous improvements, later versions of the products
may vary from those described here. Under no circumstances may this
document be regarded as a part of any contractual obligation to sup-
ply software or services, or as a definitive product description.

axiell

Contents
INtroduction ..o 1
1 An introduction to XML and XSLT....c.ccvermmnmrsmrsessassassansansnnssnss 3
1.1 What IS XML e e e e e s 3
1.1.1 XML document requirementscocovviiiiiiiiiiininea 3
1.1.2 How XML documents may be structuredc.ccoevnene. 5
1.1.3 Available XML types ...iciiiiiiiii i 6
O Unstructured XML from the WebAPI or Collections............... 6
O Grouped XML as produced by the WebAPI or Collections...... 8
1.2 What IS XS LT ettt e e e 11
1.2.1 Applying a stylesheet to XMLcocvviiiiiiiiiiiiiiici i 12
1.2.2 A bare stylesheet........cocooiiiiiii 13
1.2.3 XPath and templatesccoviiiiiiiiiiiii 13
1.2.4 Extending the stylesheet to produce proper HTML........... 15
1.2.5 Using CSS stylesheetsccovoiiiiiiiiiii e 17
1.2.6 Applying HTML tablesooviiiiiiiiiiice e 21
1.2.7 Functions, variables and parameters in XPath................. 23
O Axiell Collections parametersccooevviiiiiiiiiiiiiiic i 26
1.2.8 Getting an example of the generated XML.............ccevuens 27
1.2.9 Best practiCe ...ooviiiiiiii i 28
1.2.10 Other uses of XML and XSLTccovviiiiiiiiiiiiiiiiiieinienens 28
1.2.11 More information.....coccviiiii i e 28
2 Creating output formatsc.ccvcvmirmirarirsrra s s ssasasnasas 29
2.1 Grouped XML for XSLT export/output formats....................... 29
2.1.1 Setting the XML type in Designer.......cccvvevvieiiiiinnnennnne. 29
2.1.2 Advantages of grouped XML for use in stylesheets 30
[0 Examples of working with occurrencesc.coeevviennnnn. 30
2.2 Printing iMages ...oviiriiiiiiiiiiie e e re e 33
2.3 Retrieving multilingual data.........c.cooiiiiiii 35
2.4 Using @ page break ...vvviiiiii i 36
2.5 Printing barcode labels to a normal printer..........ccocoevieinennnn. 36
2.6 Creating text labels from HTML fieldsccoovviiiiiiiiiiiiennnns 39

3 Inline reports for the Report viewer.........ccocverimverierarimnanases 41

Introduction

Underneath the surface of the graphical user interface of your Axiell
Collections application, records are handled by the software in XML
format, which basically is a hierarchically structured text format. Nor-
mally, you won't encounter the XML itself, but you’'ll have to know
about it if you want to start using XSLT to create inline reports, output
formats or to edit presentation formats for your Axiell Internet Server
web application, to name but a few. XSLT is a stylesheet language
(itself in XML format) to “transform” an XML document to some other
document; this may be an XML document with the same structure but
with changes made to the data in it, or it can be a differently struc-
tured XML document, an HTML document or some other text file.

XML and XSLT are third-party programming technologies, so to
properly learn all about them we recommend studying other sources
than the document before you. In this manual though, you'll get a
quick introduction followed by actual examples applicable to the Axiell
software, enough to get you started properly.

1 1-10-2025

1 An introduction to XML and XSLT

1.1 What is XML

XML (eXtentible Markup Language) provides a means of hierarchically
structuring data in a text file. In contradiction to HTML (which is in-
tended to lay out text or data for display in web browsers), it does not
offer layout instructions. Other than a few PIs (Processing Instructions
providing metadata about the document for the processor, enclosed in
<? 2>) at the start of the file, the only language it contains consists
of tags, the name of which can be anything the maker of the XML
document desired. Every separate piece of data must be enclosed by a
start and end tag, formatted like <tag>data</tag>, together called an
element or node, which may be spread over different lines. The follow-
ing is an example of a simple yet complete XML document (not Axiell
XML in any way though), although no title has been specified for the
third book:

<?xml version="1.0" ?>
<!-- my comment -->
<booklist>
<book isbn="901234567">
<author>Hesse, Herman</author>
<author>Claus, Hugo</author>
<title>Siddharta</title>
</book>
<book>
<author>Wolkers, Jan</author>
<title>Terug naar Oegstgeest</title>
<publisher>Summer & Kéning</publisher>
</book>
<book>
<author>Austen, Jane</author>
</book>
</booklist>

Every XML document has to start with: <?xml1 version="1.0" 2> or
<?xml version="2.0" ?> to tell the processor which XML version is
implemented in this document. Optionally, you could also mention
here the Unicode representation in which this file has been saved,
e.g.: <?xml version="1.0" encoding="UTF-8"?>

1.1.1 XML document requirements
There are some further rules to putting together an XML document.

1. Each XML document can only have one root tag. In the example
above this is booklist.

3 1-10-2025

An introduction to XML and XSLT

2.

Tags must have sensible names, so that others can easily under-
stand the document, and for the sake of interoperability. Even if it
contains Collections data, those names need not be the same as
field names per se, but it does make it easier to process of course.

Every element must be closed. A start tag without an end tag
corrupts an XML document. If there is no data between a start and
end tag, this may be indicated by a single combined tag to open
and close at once: <tag/>.

Note that there’s a difference between an empty tag, for instance
<title></title> and no title tags at all, which is relevant to
XSLT stylesheets processing an XML document.

Tags are nested. In the example you can see that the authors
Hesse and Claus are nested within the first book tag, and that the
book tags are nested within the root tag booklist. This nesting is
crucial to keeping data together, like it is in Collections records.

The increasing indentation (whitespace) in front of nested tags, as
shown in the example, is not strictly necessary, but it keeps the
document readable.

Visual Studio is handy for writing and editing XML docs, because it
suggests end tags and adds coloring, but you can edit an XML doc
in any text editor, like Notepad++, as long as you save the file in
Unicode UTF-8 representation (if you want to use the XML file in
Axiell software).

A tag may have attributes. An attribute is metadata included in a
start tag, and it’s purpose is to describe something about the data
in the current element or all elements nested in it. It should be in
the format <tag attribute="value">. In our example there is
one attribute for the tag book: <book isbn="901234567">. This
may not be a good example because ISBN is a field in a Collec-
tions record, and is not really considered metadata in there. But
the maker of the document decides what is metadata and what
isn‘t. The language of records could also be specified this way, for
example: <booklist language="en-US">. Every XML start tag
may have zero, one or more attributes; attributes should be sepa-
rated by a space. And every attribute must have a unique name,
specified by the maker of the document, and it cannot contain
spaces. The double quotes around the value are mandatory, a val-
ue in between isn’t. Note that double quotes come in different va-
rieties, but should be the straight version, as follows: ", not ™ or ”
as created by MS Word for example.

1-10-2025 4

An introduction to XML and XSLT

7. A few characters have to be “escaped” (meaning: replaced) when
used in the data itself, because they are reserved characters to
the XML language. These are:

Character Escape sequence to use in data
< <

> >

* '

" "

& &

In our example we see an illustration of this: <publisher>Summer
gamp; Koéning</publisher>. Note that other special characters in
data, for instance a or € don't need to be escaped because this is

a Unicode file.

8. XML tags and attributes are case-sensitive. So <Author> is not the
same as <author>.

The easiest way of checking whether an XML document doesn’t con-
tain any errors is by double-clicking it in Windows Explorer. If the file
opens normally in your internet browser, there are no XML syntax
errors. However if there are syntax errors, then the file doesn’t open
and the browser displays an error message. So, your browser can
validate an XML document.

1.1.2 How XML documents may be structured

If you were to write an XML document yourself, you would in principle
be free to structure it any way you wanted. But if XML documents
must be exchangeable between diverse software programs, you'll
probably want the XML to adhere to some rules. Because you’'ll not
only have software producing XML but also software to do something
with the XML input (like the Axiell Internet Server web application or
Axiell Collections for example), and therefore the hierarchy in the XML
file must be what the software expects it to be.

For Collections you usually won't write XML documents manually: they
are produced internally by the software as the (intermediate and/or
end) result of an export or print job or as the search result from the
WebAPI. So the software will by default produce XML documents,
which adhere to earlier specified rules for Axiell XML files, together
forming the so-called Axiell AdlibXML* schema. Whenever third-party
software produces XML documents to be processed by Axiell software
at some point, it must also comply to this schema.

5 1-10-2025

An introduction to XML and XSLT

There are two methods to specify rules to which XML files must ad-
here, via a DTD (Document Type Definition) or XSD (XML Schema
Definition).

e DTD is an old-fashioned way: for example, older versions of EAD
(Encoded Archival Description) used it. A disadvantage of the DTD
is its syntax, which allows for files to become unreadable because
of their complexity.

e XSD, the XML Schema Definition is DTD’s successor. It is an XML
file itself.

XML used by Axiell software is formatted according to the
adlibXML.xsd (which can be viewed in full at
https://webapi.axiell.com/content/downloads/adlibXML.xsd). The most
important thing you need to know about AdlibXML is that only the XML
tags of the three highest levels have been defined, namely: adlibxML
(root tag), recordlist (may occur only once), record (may occur
indefinitly). Further, there is a diagnostic tag (in WebAPI output) on
the level of the recordlist, which contains metadata about the
search, such as the elapsed time and the number of records that were
found. The fields in the records are contained within each record ele-
ment and have the English field name by which they are declared in
the database table .inf file. The structure of a Collections record itself
is not defined in the schema definition because this differs per data-
base table and XML type.

* Even though the “Adlib” brand name is no longer actively being used
by Axiell, it still appears in the current AdlibXML schema name and
some other legacy files and jargon still in use by Axiell software.

1.1.3 Available XML types

Within the AdlibXML schema, different XML types are possible, mainly
separated into unstructured and grouped XML, but grouped XML still
has variations. XML is either produced by Axiell Collections or by the
Axiell WebAPI (which can process Collections data for the Axiell Inter-
net Server web application).

B Unstructured XML from the WebAPI or Collections

Unstructured XML can be produced by the WebAPI or be exported by
Axiell Collections, if requested so.

Unstructured XML has a flat structure: all fields and their occurrences
are immediate children of the record element. If a field has multiple
occurrences, then all those occurrences are listed directly underneath
each other.

1-10-2025 6

https://webapi.axiell.com/content/downloads/adlibXML.xsd

An introduction to XML and XSLT

One small difference between the unstructured XML from the WebAPI
and Collections is that when produced by Collections, each field ele-
ment also has a tag and occ attribute to provide the field tag and
occurrence number, while field elements in WebAPI unstructured XML
do not have these attributes. (The attributes were added to accom-
modate the All fields overview (containing data) with tags inline XSLT
report in Collections, which also needed to contain field tags and oc-
currence numbers.)

e Of a multilingual field (if present), all language values will be ex-
ported by both the WebAPI as well as Collections. Values in the
WebAPI output will have an invariant attribute though, while
Collections output doesn’t. A WebAPI example:

<title>

<value lang="nl-NL" invariant="true">Mijn meertalige
titel</value>

<value lang="en-GB" invariant="false">My multilingual
title</value>
</title>

A Collections example:

<title tag="ti" occ="1">
<value lang="nl-NL">Mijn meertalige titel</value>
<value lang="en-GB">My multilingual title</value>
</title>

e Of an enumerative field, both the WebAPI and Collections return
the neutral value plus all user interface translations listed inside
the field element, in a value sub node per language. A Collections
example:

<management status tag="ms" occ="1">
<value lang="neutral">INTERNAL</value>
<value lang="0">internal</value>
<value lang="1l">eigen beheer</value>
<value lang="3">Intern</value>
</management status>

e The record element in Collections output contains a priref, cre-
ation and modification attribute, while in WebAPI output the
record element contains a priref, created, modification, se-
lected and deleted attribute

Below you can see an abbreviated example of a Collections export of a
book record with a multilingual title field, to unstructured XML:

7 1-10-2025

An introduction to XML and XSLT

<?xml version="1.0" encoding="utf-8"?>

<adlibXML>

<recordList>

<record priref="3" creation="2018-10-25T10:46:40"
modification="2024-02-22T13:29:52">
<priref tag="%0" occ="1">3</priref>
<edit.date tag="dm" occ="1">2024-02-22</edit.date>
<edit.notes tag="mm" occ="1"/>
<edit.name tag="nm" occ="1">erik</edit.name>
<edit.time tag="tm" occ="1">13:29:52</edit.time>
<edit.source tag="vm" occ="1">document>book</edit.source>
<material type tag="ms" occ="1">Boek</material type>
<input.time tag="tx" occ="1">10:46:40</input.time>
<input.date tag="di" occ="1">2018-10-25</input.date>
<input.name tag="ni" occ="1">erik</input.name>
<title tag="ti" occ="1">
<value lang="en-GB">The chase</value>
</title>
<lead word tag="lw" occ="1"/>
<input.source tag="vi" occ="1">document>book</input.source>
<material type.lref tag="L4" occ="1">l</material type.lref>
</record>
</recordList>
</adlibXML>

B Grouped XML as produced by the WebAPI or Collections

Grouped XML can be produced by the WebAPI or be exported by Axiell
Collections, if requested so. You can use record data in grouped XML
format to create an output format, using XSLT, for example.

Grouped XML is hierarchically structured XML: fields may be a direct
child of the record element, or when a field group name has been
defined in the data dictionary, a child of a group element with the
name of the group. In this case the group element is a child of the
record element. Examples of returned XML can be studied at
https://webapi.axiell.com/Topics/search.html by first adding
sxmltype=grouped to the example queries, if needed, and then exe-
cuting them.

If at least one of the fields in a field group has multiple occurrences,
then the entire field group is repeated as many times. Empty occur-
rences of fields in a field group are retrieved as well (if specified to
retrieve, in adlibweb.xml). The main advantage of the grouped type
over the unstructured one is that it becomes easier to process repeat-
ed occurrences of grouped fields, using XSLT. In unstructured
AdlibXML, all fields and field occurrences are just listed in one long list
inside the <record> node, whilst in grouped AdlibXML, fields are
grouped within a field group node (if a relevant field group exists in
the data dictionary) and that field group node is repeated for each
field group occurrence.

1-10-2025 8

https://webapi.axiell.com/Topics/search.html

An introduction to XML and XSLT

e One small difference between the grouped XML from the WebAPI
and Collections is that when produced by Collections, each field
element also has a tag and occ attribute to provide the field tag
and occurrence number, while field elements in WebAPI grouped
XML do not have these attributes. (The attributes were added to
accommodate the All fields overview (containing data) with tags
inline XSLT report in Collections, which also needed to contain
field tags and occurrence numbers.

e Of a multilingual field (if present), all language values are re-
turned as value subnodes of the field node; the language code
and invariancy flag (the latter in WebAPI output only) per lan-
guage value are returned as attributes to the value nodes.

e Of an enumerative field, both the neutral value and all available
translations of the enumerative value are returned, in value sub-
nodes underneath the enumerative field node; the presentation
languages are attributes to the value nodes, and are indicated by
a Collections language number (0 being English, 1 Dutch etc.), not
by their language code. The presentation language parameter
does not apply to the grouped XML output type.

e The record element in Collections output contains a priref, cre-
ation and modification attribute, while in WebAPI output the
record element contains a priref, created, modification, se-
lected and deleted attribute.

A partial example of grouped WebAPI output of a single record re-
trieved in detail:

<adlibXML>
<recordList>
<record selected="False" deleted="False"
modification="2012-05-31T11:11:27"
created="2007-02-07T14:40:36" priref="10">

<acquisition.date>1816</acquisition.date>
<administration name>PDP</administration name>
<content.person.name>Venus</content.person.name>
<content.person.name>Cupid</content.person.name>
<content.person.name. type>

<value lang="neutral">PERSON</value>

<value lang="0">Person</value>

<value lang="1">persoon</value>

<value lang="2">personne</value>

<value lang="3">Person</value>

<value lang="4">auw| @xi</value>

<value lang="6">npdowmno</value>
</content.person.name.type>
<creator.role.lref>2</creator.role.lref>
<Dimension>

<dimension.value>118.1</dimension.value>

9 1-10-2025

An introduction to XML and XSLT

<dimension.type>height</dimension.type>
<dimension.type.lref>6</dimension.type.lref>
<dimension.unit>cm</dimension.unit>
<dimension.unit.lref>8</dimension.unit.lref>
</Dimension>
<Dimension>
<dimension.value>208.9</dimension.value>
<dimension.type>width</dimension.type>
<dimension.type.lref>7</dimension.type.lref>
<dimension.unit>cm</dimension.unit>
<dimension.unit.lref>8</dimension.unit.lref>
</Dimension>
<institution.name>The Fitzwilliam Museum</institution.name>
<institution.name.lref>4</institution.name.lref>
<institution.place/>
<Material>
<material.part>medium</material.part>
<material>oil paint</material>
</Material>
<Material>
<material.part>support</material.part>
<material>canvas</material>
</Material>
<object category>painting</object category>
<object category.lref>l</object category.lref>
<object number>109</object number>
<priref>10</priref>
<Production>
<creator>Palma, Jacopo il Vecchio</creator>
<creator.date of birth/>
<creator.date of death/>
<creator.history/>
<creator.qualifier/>
<creator.role>painter</creator.role>
<production.notes/>
<production.place/>
</Production>
<Title>
<title>
<value lang="el-GR" invariant="false">Venus and
Cupid</value>
</title>
</Title>
</record>
</recordList>
<diagnostic>
<hits>1</hits>
<xmltype>Grouped</xmltype>
<first item>1</first item>
</diagnostic>
</adlibXML>

e In the grouped output, the record priref is an attribute of the
<record> node, but appears as a separate node as well.

1-10-2025 10

An introduction to XML and XSLT

e Up to and including WebAPI version 3.6.1173.0, if in the grouped
XML output an accessible field to be retrieved was part of a data
dictionary field group, then all fields from the field group would be
retrieved, even if they were empty. In later versions, only the
available fields set in adlibweb.xml will be retrieved.

e In the grouped XML output, the names of the subnodes of a linked
field are the names of the linked field in the primary database
(which are the target fields for any merged-in fields).

e In the grouped XML output, the linkref field has its own subnode
underneath the linked field, containing the actual linked record
number.

1.2 What is XSLT

XSL(T) stands for eXtensible Stylesheet Language Transformations. It
is a pattern-based language and has characteristics of programming
languages as well, which you use to “transform” an XML document to
some other document; this may be an XML document with the same
structure but with changes made to the data in it, or it can be a differ-
ently structured XML document, or an HTML document, CSV or some
other text file. During transformation, the data from the original XML
document can also be processed in other ways.

Axiell Collections internally represents records as XML and when you
execute an XSLT output format or display it through the Report viewer
for the current record, this XML is passed on to the associated
stylesheet which converts the XML to the desired format: this target
format would usually need to be HTML if it concerns an Inline display
format or a Normal page or Raw output (print) format, but any other
desired target format (XML, plain text, etc.) is possible too if you'd like
to use the resulting document for other purposes, e.g. as an exchange
file to import the data into some other application. As XML-to-XML
stylesheets, it allows third-party XML export files or search results to
be tranformed to XML that Collections can work with, or vice versa. As
XML-to-HTML stylesheets, it allows Axiell AdlibXML, like produced by
the WebAPI and internally by Collections to be transformed into fully
laid out pages presentable like web pages in a browser, in the Collec-
tions Report viewer or to be printed with a nice layout.

Originally XSLT was just named XSL, as it was thought to primarily
function as layout language to produce HTML output, but as it turned
out that it could be used for other transformations as well, the “T” was
added. For stylesheet names it is irrelevant whether you use the ex-
tension .xs/ or .xslt: there is no functional difference.

11 1-10-2025

An introduction to XML and XSLT

1.2.1 Applying a stylesheet to XML
You can apply a stylesheet to an XML document either:

e programmatically via the settings file of a web application like the
Axiell Internet Server;

e by linking the stylesheet to your Collections application as an in-
line, normal or raw output format, using Axiell Designer;

e by hardcoding a reference to the stylesheet in the XML document,
like <?xml-stylesheet type="text/xsl" href="books.xsl"?>, but
this method is insecure and is therefore not supported by most
current browsers any more.

e by using a applicable code editor like Microsoft Visual Studio or
Notepad++ (the latter with the XML Tools plugin).

In all cases a “transformation engine” does the actual transforming
and produce output. Such an engine is by default part of the .NET
platform and MSXML.

Using Notepad++ with the XML Tools plugin installed is an easy way
to test your stylesheets: from an opened XML or XSLT file, select
Plugins > XML Tools > XSL transformation to open a dialog, click the
... button behind the top entry field and look up the other required file
(an XSLT file for the current XML file, for instance); then click the
Transform button to see the result.

XSL Transformation settings n

Select either XSL or XML. If active document is XML then select the XSL Stylesheet to
use for transformation; if active document is XSL then select XML you want to transform
using active XSL.

Options:

You can enter up to 16 options using following syntax:

param1=123 param2="abc¢' param3=concat('abc''123') Transform ‘

1-10-2025 12

An introduction to XML and XSLT

1.2.2 A bare stylesheet
Each stylesheet starts with something like the following:

<?xml version="1.0" encoding="utf-8"7?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/
XSL/Transform">

and ends with: </xsl:stylesheet>

XSLT 3.0 and earlier versions are supported from Collections 1.14:
only XSLT 1.0 was supported before that, not XSLT 2.0. Of XML, both
version 1.0 and 2.0 are supported, and XSLT 1.0 can be used in an
XML 2.0 document if needed.

The header may contain a third line to specify the type of output this

stylesheet will generate. For HTML this is: <xs1:output meth-
od="html"/>

In between, you specify the actual patterns. XSLT has a syntax similar
to XML, with PIs (Processing Instructions), and
<namespace:name>output</namespace:name> elements. The namespace

you always use is: xs1. The names are XSLT keywords or functions,
since the xs1 Name Space applies. XSLT is also case-sensitive.

1.2.3 XPath and templates
Suppose we have the following XML document (not AdlibXML):

<?xml version="1.0" 2>

<!-- my comment -->
<booklist>
<book isbn="901234567">
<author>Hesse, Herman</author>
<author>Claus, Hugo</author>
<title>Siddharta</title>
</book>
<book>
<author>Wolkers, Jan</author>
<title>Terug naar Oegstgeest</title>
<publisher>Summer & Kéning</publisher>
</book>
<book>
<author>Austen, Jane</author>
</book>
</booklist>

XPath is similar to a path in the folder structure in Windows, but it
applies to an XML document. For example, the XPath of any author in
this document is /booklist/book/author. This is relevant for the tem-

13 1-10-2025

An introduction to XML and XSLT

plates in your stylesheet. In XSLT, templates are the basis for the
intended transformation: they contain the functions and text or HTML
code to be applied, respectively added to XML elements which you
consider to be a pattern. A very simple example of a stylesheet
books.xsl (which doesn’t apply any HTML codes yet) for this XML file
might clarify this:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>

<xsl:template match="/booklist">
<xsl:apply-templates select="//author"/>
</xsl:template>

<xsl:template match="author">
anonymous
</xsl:template>

</xsl:stylesheet>

Two templates have been defined in here. What the transformation
engine does, is it looks for template matches which it can apply
(match), starting from the root of all XPaths. A template for the root of
the XML hierarchy should always be present. Whether it can apply a
template depends on whether the XPath node to match or select is
accessible from the root (if the XPath to match start with a single
slash) or from the current XPath level (if the XPath to match doesn’t
start with a slash). For example, the author template cannot be
matched from the root, but booklist or /booklist can. Each time a tem-
plate gets a “match” with a node in the XML, that node becomes the
current XPath level and when the matched template is done pro-
cessing, the current XPath level reverts to the previous level from
which the template was called with apply-templates. In the example
above we intend to look for every occurrence of an <author> element
in the XML file and replace it's content by the text “anonymous”. So
from the root node the /booklist node is accessible, but from there the
author node is only available outside the context of their book nodes if
we precede it by “//”: this means the author node can occur anywhere
in an XPath.

The single forward slash (pointing to an absolute XPath starting from
the root) selects only the immediate child elements of the provided
node, while the double forward slash (pointing to a relative XPath)
selects all descendants of the current node, regardless of their level.

The Notepad++ result of this stylesheet applied to the example XML
file is the following:
1-10-2025 14

An introduction to XML and XSLT

anonymous
anonymous
anonymous

anonymous

If we were to leave out “//” the match could not be made, and apply-
ing the stylesheet would result in an empty page. But if you know at
what level in an XPath the author node occurs you may also point
directly to it, in our case via:

<xsl:template match="/booklist">

<xsl:apply-templates select="book/author"/>
</xsl:template>

From the result you might deduce how the transformation works.
There are two templates, but the author template cannot be matched
from the root of XPath, the /booklist can be matched though. So the
transformation process enters into this template for instructions about
how to transform the /booklist node of the XML file, and this node also
becomes the current XPath level. From this node we want to explicitily
call the author template, which we do with: apply-templates se-
lect="<relative Xpath to desired template>". S0 from the /booklist
node we can access the author template by selecting either
book/author or //author.

And although we only call the author template once, it is automatical-
ly applied to all author elements in the XML file, at the selected XPath
level: /author elements placed directly underneath the /booklist node
for example, would not be matched.

In the displayed result we can also see that the titles and publisher
from the XML file have been ignored; this is because we haven’t speci-
fied templates for these elements yet.

By the way, if the XSLT file does exist (in the same folder), but has no
templates specified, then the implicit “default” template is used to
output and lay out the full XML contents.

1.2.4 Extending the stylesheet to produce proper HTML

Until now, our transformations have not produced proper HTML docu-
ments, even though we specified output method html. It is good prac-

15 1-10-2025

An introduction to XML and XSLT

tice to always adhere to the rules of the document type you are trans-
forming to. So let’s extend our stylesheet to make proper HTML.

An empty HTML file may look as follows:

<html>
<head>
<title>My title for this page</title>
</head>
<body>

</body>
</html>

Actual content will be placed between the <body> tags. A simple piece
of content may be:

<p>This is one line of <i>text</i>.</p>

The word “text” will be displayed in italics.

Extending our XSLT stylesheet could for example result in the follow-
ing:

<?xml version="1.0" encoding="utf-8"7?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>

<xsl:template match="/booklist">
<html>
<head>
<title>My title for this page</title>
</head>
<body>
<xsl:apply-templates select="book"/>
</body>
</html>
</xsl:template>

<xsl:template match="book">
<xsl:apply-templates select="author"/>
<xsl:apply-templates select="title"/>
</xsl:template>

<xsl:template match="author">
<p>
<xsl:value-of select="."/>
</p>
</xsl:template>

1-10-2025 16

An introduction to XML and XSLT

<xsl:template match="title">
<p><i>
<xsl:value-of select="."/>
</1i></p>
</xsl:template>

</xsl:stylesheet>

Note a couple of things:
e A template for the title node has been added.

e The XPaths to the author and title nodes are handled a little dif-
ferently here. The base match now takes place on /booklist/book.

e Instead of replacing author names by “anonymous”, we display
the value contained in the author node in the XML file, and the ac-
tual titles.

e We have added HTML tags in different places to make the output
proper HTML.

The result is as follows:

<html>

<head>

<META http-equiv="Content-Type" content="text/html">
<title>My title for this page</title>
</head>

<body>

<p>Hesse, Herman</p>

<p>Claus, Hugo</p>
<p><i>Siddharta</i></p>

<p>Wolkers, Jan</p>

<p><i>Terug naar Oegstgeest</i></p>
<p>Austen, Jane</p>

</body>

</html>

This illustrates the order in which the templates have been applied.
Per book-match, to all authors the author template is applied, then to
all titles the title template. And every author and title is placed on a
new line, because the HTML <p>-tags are in the author and title
templates.

1.2.5 Using CSS stylesheets

In HTML pages you have the option to refer to a CSS (Cascading Style
Sheet), although this is in no way a requirement. In a CSS you can
assign font types and character layout styles to HTML structural ele-

17 1-10-2025

An introduction to XML and XSLT

ments (like the body of the page or tables) and to so-called layout
classes which you specify yourself. The advantage of doing this in a
CSS instead of just hardcoded in the HTML itself (like in the example
above for the italic layout of the title), is that it is much more efficient
and faster to adjust the definition of a style once, than to re-apply the
adjusted style everywhere in the HTML. However, if you don’t need
reusable layout styles and you don’t mind applying all layout through
HTML tags, then you might as well leave CSS out of the equation alto-
gether.

An example of a simple CSS is the following. Save this file as
mystyle.css in the same folder.

BODY
{
color: blue;
background-color: lightyellow;
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 85%;

TABLE
{

color: blue;

}

.title

{
font-style: italic;
text-decoration: underline;

}

Note a couple of things:

e titleis a new class, BODY and TABLE are HTML structural ele-
ments. (The TABLE style will be used later on.)

e The several font types summed up behind font-family, indicate
the priority in which these are applied. If the computer of the user
doesn’t have the Verdana type installed, Arial will be used, etc.

e Instead of colour names, you can also use the hexadecimal RGB
(Red Green Blue) notation of colours, e.g. #DDDDDD (grey), or
#ffffo9 (yellow).

In an HTML document you link to a CSS in the <head> section:

<link type="text/css" href="mystyle.css" rel="stylesheet"/>

So in our XSLT stylesheet, where we build up an HTML page, we can
do exactly the same, as can be seen in the further extended XML doc-
ument:

1-10-2025 18

An introduction to XML and XSLT

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>

<xsl:template match="/booklist">
<html>
<head>
<link type="text/css" href="mystyle.css" rel="stylesheet"/>
<title>My title for this page</title>
</head>
<body>
<xsl:apply-templates select="book"/>
</body>
</html>
</xsl:template>

<xsl:template match="book">
<xsl:apply-templates select="author"/>
<xsl:apply-templates select="title"/>
</xsl:template>

<xsl:template match="author">
<p>
<xsl:value-of select="."/>
</p>
</xsl:template>

<xsl:template match="title">

<p>

<div class="title">
<xsl:value-of select="."/>
</div>

</p>

</xsl:template>

</xsl:stylesheet>

Instead of storing the CSS code in its own file, you can also choose to
include it in the XSLT stylesheet itself, in between HTML <style
type="text/css"> and </style> tags in the <head> section:

<head>

<title>My title for this page</title>

<style type="text/css">
BODY
{
color: blue;
background-color: lightyellow;
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 85%;

}

19 1-10-2025

An introduction to XML and XSLT

TABLE
{
color: blue;

}

.title
{
font-style: italic;
text-decoration: underline;
}
</style>
</head>

Without the CSS styles, you can obtain a similar result by including
HTML layout tags and attributes in the XSLT templates, as follows:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>

<xsl:template match="/booklist">
<html>
<head>
<title>My title for this page</title>
</head>
<body bgcolor="1lightyellow">

<xsl:apply-templates select="book"/>

</body>
</html>
</xsl:template>

<xsl:template match="book">
<xsl:apply-templates select="author"/>
<xsl:apply-templates select="title"/>
</xsl:template>

<xsl:template match="author">
<p>
<xsl:value-of select="."/>
</p>
</xsl:template>

<xsl:template match="title">
<p>
<u><i><xsl:value-of select="."/></i></u>
</p>
</xsl:template>

</xsl:stylesheet>

1-10-2025 20

An introduction to XML and XSLT

The HTML result of either transformation now looks as follows:

<html>

<head>

<META http-equiv="Content-Type" content="text/html">
<title>My title for this page</title>
</head>

<body bgcolor="1lightyellow">

<p>Hesse, Herman</p>

<p>Claus, Hugo</p>
<p><u><i>Siddharta</i></u></p>

<p>Wolkers, Jan</p>

<p><u><i>Terug naar Oegstgeest</i></u></p>
<p>Austen, Jane</p>

</body>

</html>

After saving and opening this HTML file in a browser, the result looks like this:

Hesse, Herman
Claus, Hugo
Siddharta
Wolkers, Jan

Teruqg naar Oegstgeest

Austen, Jane

1.2.6 Applying HTML tables

Now let’s try to put this in a nice table, using CSS. Again, we use
standard HTML tags to accomplish this. The template and the location
therein in which you place these tags matters of course. After all, do
you want a table around each author, around each book, or just one
for the entire booklist?

To get one table around all books, we have to call the book template
within HTML <table> tags from within the first template and call the
author and title templates within table cells and rows:

21 1-10-2025

An introduction to XML and XSLT

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>

<xsl:template match="/booklist">
<html>
<head>
<link type="text/css" href="mystyle.css" rel="stylesheet"/>
<title>My title for this page</title>
</head>
<body>
<table border="1">
<xsl:apply-templates select="book"/>
</table>
</body>
</html>
</xsl:template>

<xsl:template match="book">
<tr>
<td>
<xsl:apply-templates select="author"/>
</td>
<td>
<xsl:apply-templates select="title"/>
</td>
</tr>
</xsl:template>

<xsl:template match="author">
<p>
<xsl:value-of select="."/>
</p>
</xsl:template>

<xsl:template match="title">

<p>
<div class="title">
<xsl:value-of select="."/>
</div>
</p>

</xsl:template>

</xsl:stylesheet>

The resulting HTML opened in a browser looks like this:

1-10-2025 22

An introduction to XML and XSLT

Hesse, Herman
Siddharta

Claus, Hugo
|Wolkers, Jan _|[Terug naar Oegstgeest]
|Au5ten, Jane || |

1.2.7 Functions, variables and parameters in XPath

In XSLT you can use variables but you can assign a value to it only
once. So you cannot use incremental counters, or string variables
which you build up piece by piece. Nor are there normal loop construc-
tions. (The solution here is recursive programming: calling the current
template from within the template, with parameters, but that is be-
yond the scope of this documentation.)

Let’s extend the XSLT stylesheet we've been working on with some
basic functionality, to finish this introduction:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/booklist">
<html>
<head>
<link type="text/css" href="mystyle.css" rel="stylesheet"/>
<title>My books list</title>
</head>
<body>
<table border="1">
<xsl:apply-templates select="book"/>
</table>
</body>
</html>
</xsl:template>
<xsl:template match="book">
<tr>
<td><xsl:apply-templates select="author"/></td>
<td><xsl:apply-templates select="title"/></td>
<td><xsl:apply-templates select="publisher"/></td>
</tr>
</xsl:template>

<xsl:template match="author | publisher">
<p>
<xsl:value-of select="name()"/>
<xsl:variable name="name">
<xsl:choose>
<xsl:when test="contains(., ',')">

23 1-10-2025

An introduction to XML and XSLT

<xsl:value-of select="substring-after(., ',")"/>

l;
<xsl:value-of select="substring-before(., ',")"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="."/>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:call-template name="printTheName">
<xsl:with-param name="nameParameter" select="$name"/>
</xsl:call-template>
</p>
</xsl:template>

<xsl:template name="printTheName">
<xsl:param name="nameParameter"/>

<xsl:value-of select="$nameParameter"/>
</xsl:template>

<xsl:template match="title">

<p>
<div class="title">
<xsl:value-of select="."/>
</div>
</p>

</xsl:template>

</xsl:stylesheet>

The result looks as follows:

author : Herman Hesse
Siddharta
author : Hugo Claus

author : Jan Wolkers ||[Terug naar Oegstgeest|publisher : Summer & K&ning
author : Jane Austen {

The first thing we may notice is that the publisher is now displayed as
well. To this end we've changed the author template so that it applies
to publishers too. This is done in:

<xsl:template match="author | publisher">

And in the book template we of course have to apply the publisher
template as well:

<td><xsl:apply-templates select="publisher"/></td>

Then we may notice that there is “fixed” text displayed in front of au-
thors and publishers, namely “author :” and “publisher :”. “author”

1-10-2025 24

An introduction to XML and XSLT

and “publisher” are the names of the current XPath nodes, which you
include in the output via:

<xsl:value-of select="name ()"/>

In the printTheName template the colon is added.

But the most important change is the reversal of surname and first
name. Within the <xs1:variable name="name"> node we switch sub-
strings. The output generated by the select statements is put in the
name variable automatically simply because this output is created
within the variable node.

In the choose node we have a sort of IF-THEN-ELSE, implemented here
as when and otherwise. <xsl:when test="contains(., ',')"> means if
the current XML node content contains a comma, then execute:

<xsl:value-of select="substring-after(., ',")"/>

l;
<xsl:value-of select="substring-before(., ',")"/>

First the current content substring behind the comma is send to out-
put (the first name), then a space is inserted in the output (s#xa0),
then the last name is extracted and placed behind the first name and
the single space. Note that functions are always put in the “value” part
of a select statement.

If the author name or publisher name contains no comma, then no
switch can be performed, so the otherwise part is executed: the en-
tire node content is send to output (here, to the name variable).

Then the printTheName template is called with a parameter. The pa-
rameter nameParameter is filled with the value from the name variable;
the s in front of name retrieves the value.

In the printTheName template first the parameter is declared. Then, in
<xsl:value-of select="$nameParameter"/> the value from nameprarame-
ter, which was assigned when this template was called, is send to
output (the HTML file, not the name variable).

Note that variables are local within a template, so the above illustrates
how to pass on the value from a variable to another template.

A simpler solution might have been to output the name variable from
the author | publisher template directly, without needing the
printTheName template at all:

:<xsl:value-of select="$name"/>

25 1-10-2025

An introduction to XML and XSLT

Further note that apply-templates is used to apply the named tem-
plate to all elements with this name in the XML file, while ca11-
template calls a template which has no matching XML node.

m Axiell Collections parameters

When Axiell Collections generates XML for output or display which will
be formatted by an XSLT stylesheet, it passes a humber of parameters
(aka system variables) to the stylesheet. You can use these parame-
ters and the values contained in them to enhance the functionality of
your XSLT stylesheets. The available parameters are the following:
namely:

» ui_language - the current user interface language as it is active
in Axiell Collections. The parameter contains a standard two-letter
language code, like en for English, n1 for Dutch, fr for French, de
for German etc. This parameter can be used in output formats.

e data_language - the currently selected data language as an IETF
language tag. Examples of these IETF language codes are: 'en-
GB', 'en-US', 'nl-NL', 'de-DE', 'fr-FR'. This parameter can be
used in output formats.

e retrievalPath - will contain the path or URL as set in the Axiell
Designer Retrieval path option of an image field in the data dic-
tionary. This parameter can be used in output formats if the path
is a full URL. (So you need an image server to allow printing of
images.)

e thumbnailRetrievalPath - will contain the path or URL as set in
the Axiell Designer Thumbnail retrieval path option of an image
field in the data dictionary. This parameter can be used in output
formats if the path is a full URL. (So you need an image server to
allow printing of images.)

If you don't want users to be able to print your high resolution im-
ages and you have thumbnail images available in a separate folder
set up in the Axiell Designer Thumbnail retrieval path option of an
image field in the data dictionary, then you may use the thumb-
nailRetrievalPath parameter instead of the retrievalpPath pa-
rameter.

To use the parameters in a stylesheet, declare them as a regular XSLT
parameter without a default value (because it will be overwritten
anyway) somewhere in the file, for example:

<xsl:param name="data language”></xsl:param>
<xsl:param name="ui_language"></xsl:param>

1-10-2025 26

An introduction to XML and XSLT

It's up to you to choose which ones to use in your stylesheets. More
information about these parameters and examples of their application
can be found in further chapters.

1.2.8 Getting an example of the generated XML

Whenever you're about to create an XSLT stylesheet for Collections
data you need to know what the generated XML looks like. In the fol-
lowing chapters you’ll find an explanation of the different types of XML
you can expect and many examples, but if you're still unsure and
there’s no obvious way to view the generated XML, you may create
the following very small stylesheet to output the actually generated
XML without transforming it to anything else, giving you a good ex-
ample to work with:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" ver-
sion="1.0">
<xsl:template match="/">
<textarea rows="70" cols="90">
<xsl:copy-of select="/" />
</textarea>
</xsl:template>
</xsl:stylesheet>

or, using a different method, to output the generated XML within the
base <adlibxML> node, as part of an empty HTML document:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" vers-
ion="1.0">
<xsl:output method="html" />
<xsl:template match="/adlibXML">
<html>
<head>
<title>Get Axiell Collections output XML</title>
</head>
<body>
<xXmp>
<xsl:copy-of select ="*"/>
</xmp>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

27 1-10-2025

An introduction to XML and XSLT

1.2.9 Best practice

You should always start by creating a template (match) for the XPath
root node, in the example above this is /booklist. This is your main
template from which you should select other templates when appro-
priate.

You could arrange all other templates by size, the smallest ones at the
bottom of the stylesheet, increasing in size towards the top. But a
grouping based on “procedural” templates versus non-procedural ones
would also make sense.

Template sizes should be kept as small as possible. Preferably, any
template should be able to fit on your screen entirely. You can achieve
this by optimizing any functionality.

For transformation to HTML, it is recommended to use a CSS to speci-
fy character layout styles like fonts and colours. This keeps you XSLT

stylesheet more clean, and changes in layout styles are easier to im-

plement in a CSS stylesheet anyway.

Comment your XSLT stylesheet as much as possible, with: <!-- my
comments --> Comments cannot be nested, so if you want to “com-
ment out” a large piece of code which already has comments in it, use
a when test="0" around it.

1.2.10 Other uses of XML and XSLT

Through a so-called gateway it's possible to restructure queries made
in Collections to fit the syntax of third-party database software. The
gateway then accesses such a database over the internet, for instance
via HTTP or through SRU. When the search result comes back as XML,
it is probably not AdlibXML. However, by using XSLT stylesheets in the
gateway, it is possible to transform the foreign XML to AdIlibXML,
which is then send back to the Collections application where the data
is ready to be derived into the Collections database. This way, foreign
databases can be accessed as if they were “friendly” Collections data-
bases.

1.2.11 More information

For more information about XPath, see a third-party manual or the
internet, for example: http://www.w3.0rg/TR/xpath

1-10-2025 28

http://www.w3.org/TR/xpath

2 Creating output formats

2.1 Grouped XML for XSLT export/output formats

When you have marked one or more records in Axiell Collections, you
can choose to print them via a standard or custom output format. In
Axiell Collections you can use the printer icon in the top toolbar, to
print either all records from the result set, all marked records or just
the currently selected record.

One way to create a custom output format is to build an appropriate
XSLT stylesheet. Axiell Collections internally processes records as XML
and when you apply an XSLT output format, this XML is passed on to
the stylesheet which converts the XML to the desired format: this tar-
get format would need to be HTML if it concerns a print format, or any
other desired format (XML, csv, etc.) if you mean to use the output as
an export file.

Axiell Collections can generate either unstructured XML or grouped
XML. Which XML type must be generated by Collections, can be set
per XSLT Output job via Axiell Designer.

2.1.1 Setting the XML type in Designer

Output jobs (aka output formats or print formats), are registered per
data source (like the Object catalogue for example) underneath an
application definition (like that of Xplus 5.1 for example) in the Appli-
cation browser of Axiell Designer.

—{,E_l, Fuiell Collections application XPlus 5.1
+--) Catalogue
+ . Moving image catalogue
i---j . Object catalogue

| P Methods (76)

-l Screens (34)

-gmy Output jobs (39)

-3 Friendly databases (2)

? Tasks ()

- Connections (7)

¥ - [F]--[F] [F - [F]-[F)-

The XML type for an output job can be set in the XML type option on
the Output job properties tab of a selected output job. (See the De-
signer Help for more information about setting up output jobs.)

29 1-10-2025

https://documentation.axiell.com/alm/en/new/Topics/ds_appspropertiesoutputjobs.html
https://documentation.axiell.com/alm/en/new/Topics/ds_appspropertiesoutputjobs.html

Creating output formats

Stylesheet
XML type Grouped

Path

[LJaslt/Print Objects listash

Job title

Text
Language Text

2 m Objects list (html]
Dutch Objectenlijst (html}

2.1.2 Advantages of grouped XML for use in stylesheets

The main advantage of the grouped type over the unstructured one is
that it becomes easier to process repeated occurrences of grouped
fields. In unstructured AdlibXML, all fields and field occurrences are
just listed in one long list inside the <record> node, whilst in grouped
AdlibXML, fields are grouped within a field group node (if a relevant
field group exists in the data dictionary) and that field group node is
repeated for each field group occurrence.

Whenever you create an XSLT stylesheet for unstructured AdlibXML,
which must be able to collect field data per field group occurrence, you
have no choice but to always count the “position” of every processed
field occurrence because that’s the only way to retrieve the other
fields from the same position. In grouped AdlibXML on the other hand,
there’s no need for such a workaround because every field group oc-
currence is contained within its own field group node. Matching an
XSLT template to a field group node automatically provides access to
all grouped fields with the same occurrence number (in other words:
at the same position).

m Examples of working with occurrences

Suppose you wish to create an output format based on an XSLT
stylesheet, to print the object name(s) and the notes pertaining to the
object name, of a museum object. The object name and ob-

ject name.notes fields, as specified in the data dictionary of the Col-
lect database table, are part of a field group called object name. Be-

1-10-2025 30

Creating output formats

cause of this grouping you can repeat these two fields (and the others
belonging to the group) as a group in the Collections record. When
you print these group repetitions, you will want to keep them grouped
of course: you don't want a list of all object names followed by a list of
all notes.

For unstructured AdlibXML you would have to tackle this problem as
follows:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0org/1999/XSL/Transform"
version="1.0">
<xsl:output method="html" />
<xsl:template match="/adlibXML">
<html>
<head>
<title>Field group handling for unstructured XML</title>
</head>
<body>
<xsl:apply-templates select="recordList/record"/>
</body>
</html>
</xsl:template>

<xsl:template match="record">
<xsl:apply-templates select="object name"/>
</xsl:template>

<xsl:template match="object name">
<xsl:variable name="pos" select="position()" />
<p>
<xsl:value-of select="."/>

<xsl:apply-templates select:"../object_name.notes[$pos]"/>

</p>
</xsl:template>

<xsl:template match="object name.notes">
<xsl:value-of select="."/>
</xsl:template>

</xsl:stylesheet>

For grouped AdlibXML on the other hand, you could code this as
shown below:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="html" />
<xsl:template match="/adlibXML">
<html>
<head>

31 1-10-2025

Creating output formats

<title>Field group handling for grouped XML</title>
</head>
<body>
<xsl:apply-templates select="recordList/record"/>
</body>
</html>
</xsl:template>

<xsl:template match="record">
<xsl:apply-templates select="Object name"/>
</xsl:template>

<xsl:template match="Object name">
<p>
<xsl:apply-templates select="object name"/>

<xsl:apply-templates select="object name.notes"/>

</p>
</xsl:template>

<xsl:template match="object_ name">
<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="object name.notes">
<xsl:value-of select="."/>

</xsl:template>

</xsl:stylesheet>

The output of either stylesheet is structured like this:

object name in field group occurrence 1 of record 1
object name notes in field group occurrence 1 of record 1

object name in field group occurrence 2 of record 1
object name notes in field group occurrence 2 of record 1

object name in field group occurrence 3 of record 1
object name notes in field group occurrence 3 of record 1

object name in field group occurrence 1 of record 2
object name notes in field group occurrence 1 of record 2

object name in field group occurrence 2 of record 2
object name notes in field group occurrence 2 of record 2

1-10-2025 32

Creating output formats

2.2 Printing images

The image reference (aka reproduction reference) in your Collections
records does usually not consist of a full path to an image file. In cur-
rent application versions, by default a storage/retrieval path has been
set for the image field, so that only the image file name is present in
the image reference field. Since the HTML output we would like to
generate requires a URL to retrieve an image, we need to find a way
to combine the image file name from the image reference field with
the URL to the images folder (a file system path won't do). A WebAPI
call to an image server, as is often used as storage/retrieval path for
image fields in Axiell Collections is exactly what we need. To get this
base URL in your stylesheet, you can hard code it in there and concat-
enate it with the image file name, like in the following example (for
grouped XML):

<xsl:template match="Media">
<xsl:variable name="imageFileName">
<xsl:value-of select="media.reference"/>
</xsl:variable>
<xsl:variable name="imagePath">
<xsl:text>http://ourserver.com/images/wwwopac.ashx?
command=getcontent&server=images&value=</xsl:text>
<xsl:value-of select="$imageFileName"/>
</xsl:variable>
<p>

</p>
</xsl:template>

As you can see, this template matches the Media field group. It fills a
new imageFileName variable with the (first) linked image file name
from the media.reference field. Next, another new variable named
imagePath is created and filled with the base URL to our image server
after which the image file name is pasted behind it. And finally the
contents of the imagePath variable is used as the src attribute of the
HTML img tag (to retrieve the image in the resulting HTML page).

However, you can also use the retrievalPath Or thumbnailRetriev-
alpPath parameter to dynamically retrieve the URL, instead of hard
coding it but then you’ll have to strip off the $data% part of that URL.
When you print selected records from Collections using an XSLT out-
put format, Collections will pass the relevant path in the appropriate
parameters to the stylesheet. At the top of your stylesheet you would
declare the parameter:

<xsl:param name="retrievalPath"/>

33 1-10-2025

Creating output formats

And you would need templates like the following:

<xsl:template match="media.reference">
<xsl:variable name="imagePath">
<xsl:call-template name="replace-string">
<xsl:with-param name="text" select="S$retrievalPath"/>
<xsl:with-param name="replace" select="'%data%'"/>
<xsl:with-param name="with" select="."/>
</xsl:call-template>
</xsl:variable>
<p>

</p>
<p>
</p>
</xsl:template>

<xsl:template name="replace-string">
<xsl:param name="text"/>
<xsl:param name="replace"/>
<xsl:param name="with"/>
<xsl:choose>
<xsl:when test="contains ($text, $replace)">
<xsl:value-of select="substring-before ($text, $replace)"/>
<xsl:value-of select="$with"/>
<xsl:call-template name="replace-string">
<xsl:with-param name="text"
select="substring-after ($text, Sreplace)"/>
<xsl:with-param name="replace" select="$replace"/>
<xsl:with-param name="with" select="S$with"/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="S$text"/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

For an enterprise solution, in which images for the different branches
are stored in their own folders, you can still use a single image server:
with the <folderMappingsList> settings in adlibweb.xml you can
specify these different folders. In such case you need to extend your
WebAPI call with the folder1d parameter which must be assigned the
record number of the currently processed, linked media record. The
first example above can then be adapted to the following:

<xsl:template match="Media">
<xsl:variable name="imageFileName">
<xsl:value-of select="media.reference"/>
</xsl:variable>
<xsl:variable name="imageRecordLref">
<xsl:value-of select="media.reference.lref"/>
</xsl:variable>

1-10-2025 34

Creating output formats

<xsl:variable name="imagePath">
<xsl:text>http://ourserver.com/images/wwwopac.ashx?
command=getcontent&server=images&value=</xsl:text>
<xsl:value-of select="$imageFileName"/>
<xsl:text>&folderId=</xsl:text>
<xsl:value-of select="$imageRecordLref"/>
</xsl:variable>
<p>

</p>
</xsl:template>

2.3 Retrieving multilingual data

To retrieve data from a multilingual field, a tit/e field for example, in
the current data language, you would use code fragments like:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<xsl:output method="html" />

<xsl:param name="data language"/>

<xsl:template match="/adlibXML">
<xsl:apply-templates select="recordList/record"/>
</xsl:template>
<xsl:template match="record">
<xsl:apply-templates select="Title/title/value
[@lang=Sdata language] |Title/title/value
[@lang=""]"/>
</xsl:template>
<xsl:template match="Title/title/value">
<xsl:value-of select="."/>

</xsl:template>

Or, to retrieve and display maximally four specific data language val-
ues of all occurrences of the title field of the current record and pre-
cede each value by the proper language code, you can use the follow-
ing parameter declaration, template call and actual template:

<xsl:param name="data language"/>

<xsl:apply-templates select="Title/title/value"/>

35 1-10-2025

Creating output formats

<xsl:template match="Title/title/value">
<p>
<xsl:choose>
hen test="@lang="nl-NL'">
ctext>nl-NL: </xsl:text>
hen>
hen test="@lang='en-GB'">
<xsl:text>en-GB: </xsl:text>
rhen>
sl:when test="@lang='fr-FR'">
<xsl:text>fr-FR: </xsl:text>
</xsl:when>
hen test="@lang='de-DE'">
sl:text>de-DE: </xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>glt;missing values></xsl:text>

</xsl:otherwise>
</xsl:choose>
<xsl:value-of select="."/>
</p>
</xsl:if>

</xsl:template>

2.4 Using a page break

At the end of a record node you could use the following code to force
a page break after every two records. (You can change to number 2 to
a different number if you want a page break after a different number
of records.)

<xsl:1f test="position() mod 2 = 0">
<p style="page-break-before:always" />
</xsl:if>

2.5 Printing barcode labels to a normal printer

This chapter offers an example of an XSLT stylesheet (made for
grouped XML) to print simple barcode labels to a hormal printer from
within Axiell Collections. You can print to paper or label sheets. The
example is really just that, a very basic example to show you how you
can build such stylesheets yourself.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="html" />
<xsl:template match="/adlibXML">
<html>
<head>

1-10-2025 36

Creating output formats

<title>Object number barcode</title>
<style type="text/css">
. text
{
font-family: Verdana;
font-size: large;
vertical-align: top;
}
.titletext
{
font-family: Verdana;
font-weight: bold;
font-size: large;
}
.innertable
{
border: solid Opx;
border-collapse: collapse;
}
R@font-face {
font-family: "Free 3 of 9 Regular";
src: url (free3o0f9.ttf) format('truetype')
}
span.barcode
{
font-size:48pt;
font-family: "Free 3 of 9 Regular"
}
</style>
</head>
<body>
<xsl:apply-templates select="recordList/record"/>
</body>
</html>
</xsl:template>

<xsl:template match="record">
<table width="500px" border="0" cellspacing="0" cellpadding="5"
class="innertable">
<tr valign="top">
<td align="center" class="text">
<xsl:apply-templates select="object number" mode
="barcode" />
</td>
</tr>
<tr valign="top">
<td align="center" class="text">
<xsl:apply-templates select="object number" mode ="text"/>
<p> </p>
</td>
</tr>
</table>
</xsl:template>

<xsl:template match ="object number" mode ="barcode">

37 1-10-2025

Creating output formats

<!-- Barcode 39 needs a start and stop character * -->
<xsl:text>*</xsl:text>
<xsl:value-of select ="."/>
<xsl:text>*</xsl:text>

</xsl:template>

<xsl:template match ="object number" mode ="text">
<xsl:value-of select ="."/>
</xsl:template>

</xsl:stylesheet>

You can change it all you like of course, and to get it working in Axiell
Collections you do indeed have to make some changes to it.

You have to have a barcode font in the .ttf or .woff format available on
a web server on the same domain as Collections or present in the
same folder as the generated HTML file, AND the font needs to have
been installed in Windows. If you haven't got a barcode font, you'll
have to purchase such a font first, find a freely available font on the
internet or try to install a demo version of a suitable font. You refer to
this font in the CSS section of the stylesheet:

@font-face {

font-family: "Free 3 of 9 Regular";

src: url (free3of9.ttf) format('truetype'):
}

span.barcode

{

font-size:48pt;

font-family: "Free 3 of 9 Regular"
}

Replace the URL by your own URL. In this example, the font file
should be present in the same folder as the generated HTML file

Important to note is that the font-family name has to be exactly the

same as the Full name of the font. You can find this name in the Win-
dows font settings.

1-10-2025 38

Creating output formats

Personalization > Fonts > Free 3 of 9

Change font size

® 24 points

Metadata

Full name Free 3 of 9 Regular

A limitation of this implementation is that the HTML won't be portable
as far as the barcode is concerned. When printing with this stylesheet,
HTML will be generated. Often you will print this HTML directly and the
barcode will be printed too, but if you ever copy the HTML itself to
save it in a file or send it by e-mail you'll notice that it can't show the
barcode when that HTML is opened again, outside of the Collections
session. (It will then show the number instead of the barcode.)

2.6 Creating text labels from HTML fields

An HTML field is a database field meant for long, laid-out text, possibly
including images, much like a small and simple web page. Layout can
be applied to the text during editing of the record. You could use such
a field to create printable text labels to be presented with your muse-
um objects, for example. From within Axiell Collections you can print
the contents of such a field to a Word template or with the aid of a
custom XSLT stylesheet, whilst keeping the layout intact. Although
normally you will only see the laid-out text (not the HTML code) while
you are editing an HTML field, the field contents will actually be stored
as (editable) HTML code in the background.

For example, in current application versions you can find a /abel.text
field (tag AB) on the Accompanying texts tab and an inscrip-
tion.content field (tag TR) on the Inscriptions | Markings screen in the
Object catalogue, both HTML fields.

39 1-10-2025

Creating output formats

The HTML code in these fields has no <body> tags or <head> section, it
may just begin with a <p> tag and end with a </p> tag. If you add
<body> tags or a <head> section anyway, then these will be removed
as soon as you click OK. When you click OK, the HTML will also be
adjusted automatically to allow it to be saved within the (XML) storage
format of the Collections record. Any indentation and layout of the
HTML code itself will be removed as well, so that the code will be dis-
played as a single paragraph of text next time you open the editor;
since such a cluttered presentation makes it hard to edit the code, we
recommend to keep the code relatively short.

When records with HTML fields are output as XML using Collections or
the WebAPI, the HTML field contents will be extracted as HTML code
within the XML field tags, where XML reserved characters like < and >
in the HTML code will have been converted to s«1t; and >.

For both printing and browser display, the escaping of these charac-
ters needs to be reversed so that the resulting HTML contains the <
and > characters again. This is done with the disable-output-
escaping="vyes" attribute for the xsl:value-of element in the XSLT
stylesheet. Then a template to retrieve the HTML contents correctly
for printing and display doesn’t need to be more than the following:
<xsl:template match="label.text">

<xsl:value-of select="." disable-output-escaping="yes"/>
</xsl:template>

1-10-2025 40

3 Inline reports for the Report viewer

The Report viewer in Collections offers the user a different view of the
contents of the currently selected record, a raw list of all fields with
data maybe or a nicely laid out compact presentation of some of the
record contents. XSLT output formats set up in Designer with the
Template type property Inline, will be available both as a regular out-
put formats (for multiple marked records) as well as an inline report in
the Report viewer for the currently selected record only.

Output job properties Access rights
Procedure
Adapl

Document template
Template path

Template type Inline

Print service

Parameters screen

Stylesheet

XML type Unstructured

Path

» LJusit/all-fields-unstructured.xsht

Job title

Text
Language Text

» m All fields overview (containing data)
Dutch Overzicht alle velden (met data)

Current Collections applications already offer a few of these inline
reports, but you can add your own as well. To program them is not
different from programming a normal XSLT output format.

41 1-10-2025

Inline reports for the Report viewer

An inline report would be perfectly suited to employ the ui language
parameter, to show fixed texts in the current Collections interface
language. And while we're at it, for presentation purposes it would
also be nice if the formal surname, first name format of the registered
creator name would be reversed to the informal first name surname
format. In the following example you can see how to tackle this if
you'd like to display a Dutch fixed text if the interface language is
Dutch (nl) and an English text for all other interface languages:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html" encoding="UTF-8" indent="yes"/>
<xsl:param name="ui_language"></xsl:param>

<xsl:template match="/adlibXML">
<html>
<head />
<body>

<xsl:apply-templates select="recordList"/>

</body>
</html>
</xsl:template>

<xsl:template match="recordList">
<xsl:apply-templates select="record"/>
</xsl:template>

<xsl:template match="record">
<xsl:apply-templates select="Production"/>
</xsl:template>

<xsl:template match="Production">
<xsl:variable name="pos" select="position()"/>
<xsl:choose>
<xsl:when test="$pos = 1">
<xsl:choose>
<xsl:when test="$ui_ language = 'nl'">
<xsl:text>Vervaardigd door </xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>Created by </xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:text> gamp; </xsl:text>
</xsl:otherwise>
</xsl:choose>
<xsl:apply-templates select="creator"/>
</xsl:template>

1-10-2025 42

Inline reports for the Report viewer

<xsl:template match="creator">
<xsl:choose>
<xsl:when test="contains(., ',')">
<xsl:value-of select="substring-after(., ', ")"/>
<xsl:text> </xsl:text>
<xsl:value-of select="substring-before(., ',')"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="."/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>

43 1-10-2025

